Constructing Presentations of Subgroups of Right-angled Artin Groups

نویسنده

  • MARTIN R. BRIDSON
چکیده

Let G be the right-angled Artin group associated to the flag complex Σ and let π : G → Z be its canonical height function. We investigate the presentation theory of the groups Γn = π(nZ) and construct an algorithm that, given n and Σ, outputs a presentation of optimal deficiency on a minimal generating set, provided Σ is triangle-free; the deficiency tends to infinity as n → ∞ if and only if the corresponding Bestvina–Brady kernel T n Γn is not finitely presented, and the algorithm detects whether this is the case. We explain why there cannot exist an algorithm that constructs finite presentations with these properties in the absence of the triangle-free hypothesis. We explore what is possible in the general case, describing how to use the configuration of 2-simplices in Σ to simplify presentations and giving conditions on Σ that ensure that the deficiency goes to infinity with n. We also prove, for general Σ, that the abelianized deficiency of Γn tends to infinity if and only if Σ is 1-acyclic, and discuss connections with the relation gap problem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Presentations of subgroups of the braid group generated by powers of band generators

According to the Tits conjecture proved by Crisp and Paris, [CP], the subgroups of the braid group generated by proper powers of the Artin elements σi are presented by the commutators of generators which are powers of commuting elements. Hence they are naturally presented as right-angled Artin groups. The case of subgroups generated by powers of the band generators aij is more involved. We show...

متن کامل

Surface Subgroups of Right-Angled Artin Groups

We consider the question of which right-angled Artin groups contain closed hyperbolic surface subgroups. It is known that a right-angled Artin group A(K) has such a subgroup if its defining graph K contains an n-hole (i.e. an induced cycle of length n) with n ≥ 5. We construct another eight “forbidden” graphs and show that every graph K on ≤ 8 vertices either contains one of our examples, or co...

متن کامل

An Introduction to Right-angled Artin Groups

Recently, right-angled Artin groups have attracted much attention in geometric group theory. They have a rich structure of subgroups and nice algorithmic properties, and they give rise to cubical complexes with a variety of applications. This survey article is meant to introduce readers to these groups and to give an overview of the relevant literature. Artin groups span a wide range of groups ...

متن کامل

The conjugacy problem in subgroups of right-angled Artin groups

We prove that the conjugacy problem in a large and natural class of subgroups of right-angled Artin groups (RAAGs), can be solved in linear-time. This class of subgroups has been previously studied by Crisp and Wiest, and independently by Haglund and Wise, as fundamental groups of compact special cube complexes.

متن کامل

Cryptography with right-angled Artin groups

In this paper we propose right-angled Artin groups as platform for a secret sharing scheme based on the efficiency (linear time) of the word problem. We define two new problems: subgroup isomorphism problem for Artin subgroups and group homomorphism problem in right-angled Artin groups. We show that the group homomorphism and graph homomorphism problems are equivalent, and the later is known to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007